The purine nucleotide cycle. A pathway for ammonia production in the rat kidney.

نویسندگان

  • R T Bogusky
  • L M Lowenstein
  • J M Lowenstein
چکیده

Particle-free extracts prepared from kidney cortex of rat catalyze the formation of ammonia via the purine nucleotide cycle. The cycle generates ammonia and fumarate from aspartate, using catalytic amounts of inosine monophosphate, adenylosuccinate, and adenosine monophosphate. The specific activities of the enzymes of the cycle are 1.27+/-0.27 nmol/mg protein per min (SE) for adenoylosuccinate synthetase, 1.38+/-0.16 for adenylosuccinase, and 44.0+/-3.3 for AMP deaminase. Compared with controls, extracts prepared from kidneys of rats fed ammonium chloride for 2 days show a 60% increase in adenylosuccinate synthetase and a threefold increase in adenylosuccinase activity, and a greater and more rapid synthesis of ammonia and adenine nucleotide from aspartate and inosine monophosphate. Extracts prepared from kidneys of rats fed a potassium-deficient diet show a twofold increase in adenylosuccinate synthetase and a threefold increase in adenylosuccinase activity. In such extracts the rate of synthesis of ammonia and adenine nucleotide from aspartate and inosine monophosphate is also increased. These results show that the reactions of the purine nucleotide cycle are present and can operate in extracts of kidney cortex. The operational capacity of the cycle is accelerated by ammonium chloride feeding and potassium depletion, conditions known to increase renal ammonia excretion. Extracts of kidney cortex convert inosine monophosphate to uric acid. This is prevented by addition of allopurinol of 1-pyrophosphoryl ribose 5-phosphate to the reaction mixture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The purine nucleotide cycle and ammoniagenesis in rat kidney tubules.

The contribution of the purine nucleotide cycle to renal ammoniagenesis was examined in cortical tubule suspensions prepared from acidotic rats and incubated with [alpha-15N]glutamine, [15N]glutamate, or [15N]aspartate. Labeling of ammonia and adenine nucleotides was determined after enzymatic transformations designed to circumvent the technical problem that 15NH3 and H2O have the same nominal ...

متن کامل

The purine nucleotide cycle. The production of ammonia from aspartate by extracts of rat skeletal muscle.

Extracts of rat skeletal muscle convert aspartate to ammonia and fumarate plus malate. The conversion is dependent on the presence of catalytic amounts of IMP, adenylosuccinate, or AMP. In addition, GTP is required as a source of energy. A GTP-regenerating system must be supplied since the accumulation of GDP inhibits the operation of the cycle. It is proposed that the purine nucleotide cycle a...

متن کامل

The purine nucleotide cycle. Studies of ammonia production and interconversions of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ.

Electrical shock treatment produces a rapid loss of high energy phosphates in rat brain. The [ATP]/[ADP] ratio decreases to one-third of its control value within 10 s. The ammonia content increases 3-fold during the first minute after starting the stimulus. The total adenine nucleotide plus adenosine content of brain decreases an equivalent amount of hypoxanthine-containing compounds appears. A...

متن کامل

Characteristics of aspartate deamination by the puring nucleotide cycle in the cytosol fraction of rat liver.

1. The component reactions of the puring nucleotide cycle were studied in cytosol extracts of rat liver. 2. AMP deaminase was strongly activated by ATP and analogues of ATP. 3. IMP was converted into ATP by a system requiring the presence of aspartate, GTP and a nucleoside triphosphate-regenerating system. 4. Under appropriate conditions, NH3 was produced from aspartate. 5. From the rates at wh...

متن کامل

The involvement of pyruvate cycling in the metabolism of aspartate and glycerate by the perfused rat kidney.

The metabolism of glycerate and aspartate was investigated in perfused rat kidneys. The major pathway active for aspartate metabolism and NH3 production was found to include transamination, and not the purine nucleotide cycle. Pyruvate cycling was identified as a means by which reducing potential is generated in the cytosol for glucose and lactate production from these substrates. Inhibition of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 58 2  شماره 

صفحات  -

تاریخ انتشار 1976